Search results for "dynamic headspace"

showing 4 items of 4 documents

Floral scent in Iris planifolia (Iridaceae) suggests food reward

2018

Iris species can adopt different pollination strategies to attract their pollinators, generalized shelter-mimicking, specialized deceptive sexual-mimicking or food-rewarding. As attractive stimuli, Iris flowers may use their colours, large-size, symmetry, and volatile organic compounds (VOCs). However, relatively few studies in- vestigated Iris floral olfactory cues in the context of plant-visitor/pollinator interactions. In the present study we combined the identification of the floral volatiles of the nectariferous I. planifolia with insects visiting its flowers to gather data on its biology. Floral volatiles were collected in the natural environment by dynamic headspace and analysed by g…

0106 biological sciencesHoney beeInsectaPollinationIris Plantmedia_common.quotation_subjectHover flieContext (language use)Plant ScienceInsectFlowersHorticultureBiologyAnisoles01 natural sciencesBiochemistryGas Chromatography-Mass SpectrometryIridaceaeHoney BeesPollinatorBotanyAnimalsDynamic headspacePollinationMolecular BiologyIris planifoliamedia_commonVolatile Organic CompoundsAromatic compound010405 organic chemistryfungifood and beveragesGeneral MedicineSettore CHIM/06 - Chimica OrganicaBees0104 chemical sciencesIridaceaeBumble beeItalyFloral scentSettore BIO/03 - Botanica Ambientale E ApplicataIris planifoliaGC-MS010606 plant biology & botany
researchProduct

Multivariate approach to reveal relationships between sensory perception of cheeses and aroma profile obtained with different extraction methods

2014

A new and original statistical approach was used to compare the effectiveness of 4 different methods to analyse aroma compounds of seven different commercial semi-hard cheeses with regard to their orthonasal sensory perception. Four extraction methods were evaluated: Purge and Trap, Artificial Mouth, Solid-Phase Microextraction (SPME) and Solvent-Assisted Flavour Evaporation (SAFE). Among the headspace methods, Artificial Mouth gave the closest representation of the studied product space to the sensory perception one. The SAFE method was complementary to the dynamic headspace methods, as it was very efficient in extracting the heavy molecules but less efficient for extracting the most volat…

Multivariate statisticsRV coefficientmedia_common.quotation_subjectArtificial mouth[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionFlavourkey odorantPurge and trapCheesePerception[SDV.IDA]Life Sciences [q-bio]/Food engineeringparmigiano reggiano cheeseAromaAromamedia_commonmass spectrometryChromatographybiologyflavor compoundChemistry[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringphase microextraction spmebiology.organism_classificationSensory sorting taskvolatile componentMultivariate analysisExtraction methodsgas-chromatography-olfactometryExtraction methodsdynamic headspace[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood Sciencepurge-and-trap
researchProduct

Influence of complexation between amylose and a flavored model sponge cake on the degree of aroma compound release

2008

International audience; Flavoring is used in the food industry to reinforce the aroma profile of baked cereal goods. During the processing of such products, interactions between starch and aroma compounds can occur, and this may have an impact on aroma release and perception. In the present study, 20 aroma compounds were tested to establish whether they formed complexes with amylose. The structure of the complexes was determined by wide-angle X-ray scattering (WAXS). A cocomplexation study proved that several complexing compounds could be present in the same crystalline aggregate. WAXS and differential scanning calorimetry (DSC) experiments were performed in a flavored model sponge cake at …

Hot Temperature030309 nutrition & dieteticsStarchDIFFERENTIAL SCANNING CALORIMETRY03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyDifferential scanning calorimetryfoodX-Ray DiffractionAmylose[SDV.IDA]Life Sciences [q-bio]/Food engineeringOrganic chemistryAroma compoundDYNAMIC HEADSPACE ANALYSISFlavorAromaPastel0303 health sciencesbiologyCalorimetry Differential ScanningChemistryWIDE-ANGLE X-RAY SCATTERING04 agricultural and veterinary sciencesGeneral ChemistrySponge cakebiology.organism_classification040401 food sciencefood.foodFlavoring AgentsFLUORESCENT SPECTROSCOPYSpectrometry Fluorescencevisual_artOdorantsvisual_art.visual_art_mediumAmyloseGeneral Agricultural and Biological SciencesAMYLOSE/AROMA COMPOUND COMPLEXESFood Analysis
researchProduct

Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals.

2007

The authentication of the conditions of animal production, based on the analysis of meat commercial cuts, is a major challenge on both societal and analytical grounds. The aim of the present work was to propose a method for the extraction of the volatile compounds from ruminant raw muscles trimmed of fat and to assess by mass spectrometry-based techniques the relevance of these compounds for the authentication of the type of feeding offered to the animals. The first step of the study consisted of validating conditions of dynamic headspace (DH) extraction of volatile compounds that enabled us to minimize the appearance of heat-induced artifacts and to maximize the richness of the DH-gas chro…

MeatMass spectrometryGas Chromatography-Mass Spectrometryfeed tracerOils VolatileDynamic headspaceAnimalsFood scienceRaw meatvolatile compoundMuscle SkeletalAuthenticationChromatographySheepChemistryAnimal productionGeneral ChemistryAnimal FeedAnimals Domesticraw meatvirtual MS fingerprintauthenticationGas chromatography–mass spectrometryGC-MSVolatilizationGeneral Agricultural and Biological SciencesJournal of agricultural and food chemistry
researchProduct